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Abstract

An energy method is presented in this paper for the linear static analysis of first order shear deformable plates of

various shapes. In this method, the displacement fields are defined in terms of the shape functions, which correspond to

a set of predefined points and are composed of significantly high order polynomials. The positions of these points are

calculated by mapping the geometry using naturalized coordinates and the interpolating shape functions of second

order to fourth order polynomials. The displacement degrees of freedom are assigned to each of the displacement nodes.

The method is evaluated using the fully clamped and simply supported rectangular, circular and elliptic plates subjected

to uniformly distributed transverse load as examples for which the exact results are given in the monograph of Tim-

oshenko and Woinowsky-Krieger. Also presented in this paper is the analysis of the above three types of plates sub-

jected to eccentric square and circular patch loadings. Plates with eccentric square and circular openings are analyzed by

this method using the full plate model and the results compare extremely well with those obtained by finite element

methods. The cutout part of the plate is accommodated in the solution by superposing negative stiffness and load over

the area of the opening. Finally, skew plates with simply supported and clamped boundaries are analyzed and dis-

cussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The plate bending problems have been studied by great mathematicians and engineers of the last two

centuries. During the second half of the last century, the finite element method became the widely accepted
solution method for engineering problems and is being developed further for new applications and im-

proved accuracy. In the common version of the finite element method, the problem is solved using low
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order elements and the accuracy in the result is obtained through mesh refinement. This is the h-version of

the finite element method. Then the h–p version, also referred to as the hierarchical finite method, was

introduced during the seventies and early eighties of the last century. In this method mesh of a fixed order

finite element is used for the solution and the convergence is sought by increasing the degrees of the ele-
ments, while a constant mesh is maintained during the analysis. Bardell (1996) published a paper intending

to extend the application of the h–p method for the analysis of an Euler–Bernoulli beam and to emphasize

the engineering approach rather than the mathematical procedure.

Recently, researchers have shown significant amount of interest in the numerical solution of engineering

problems without using a mesh. Belytschko et al. (1994, 1996) have published a series of papers on element

free Galerkin method. A method using a meshless spatial approximation based only on nodes was used by

El Ouatouati and Johnson (1999) to derive the stiffness and mass matrices for a three-dimensional simply

connected elastic body. Suetake (2002) proposed a simple element free method using Lagrange polynomial
without employing the moving least squares (MLS) and discussed solutions of elastic beam and plate

problems. A least squares approach was used by Mohr (2000) for the approximate polynomial solutions for

simply supported equilateral triangular and square plates. Chen et al. (2003) proposed an element free

Galerkin method for the free vibration analysis of laminated composite plates. They studied square,

elliptical and perforated plate as numerical examples.

The present work also deals with the meshless solution of plate bending problems using a single algo-

rithm based on the variational principles modified such that various shaped plates can be analyzed. The

method has been used to solve rectangular, circular, elliptical, and skew plate bending problems with simply
supported and clamped boundary conditions. Load cases considered herein include: uniform load on the

entire plate, or circular and rectangular eccentric patch loads. Both full plate and the one with an eccentric

opening are analyzed successfully. There is some limited number of published work using different methods

for this type of plate bending problems. Ollerton (1976) reported bending stresses in thin circular plates

having a single eccentric hole and mixtures of clamped and simply supported boundaries. The load cases

considered were: a concentrated force uniformly distributed round the inner boundary, moments about two

perpendiculars axes, and uniform pressure on the plate surface. An exact method of solution was presented

by Harik and Salamoun (1986) for rectangular plates subjected to uniform, patch, line and point loads and
with clamped and simply supported along two parallel edges and any combination of boundary conditions

along the remaining edges. Plates subjected to line and patch loads were also studied by Venkatesh and

Jirousek (1995) using hybrid-Trefftz element, the assumed displacement field of which satisfied the differ-

ential equilibrium conditions while the conformity was imposed in a weighted residual sense. Liew and Han

(1997) used differential quadrature method (DQM) to the bending analysis of simply supported shear

deformable skew plates subjected to uniformly distributed surface load.

In the present study, the plate geometry is defined using a number of grid points of prescribed coor-

dinates and then the natural coordinates are used to derive the shape functions, which can be used in
interpolating the Cartesian coordinates of a point on and within the plate boundary. The displacement field

is introduced in Cartesian coordinates using very high order polynomials in comparison with those that are

used for the geometry. Depending upon the order of the displacement field functions, a set of nodal points

is generated using the geometric shape functions. Then the displacement shape functions in terms of

Cartesian coordinates are derived associated with each displacement node and used further for obtaining

the stiffness matrix and the load vectors. Numerical integration is performed in Cartesian system using a

large number of Gauss points and corresponding weights. To accommodate the opening in the plate, the

negative stiffness and loads over the area of the opening are superposed to the full plate equations.
Numerical results from the present method are compared with the exact (Timoshenko and Woinowsky-

Krieger, 1959) and finite element (I-DEAS) solutions. Additionally, clamped and simply supported skew

plates are investigated and results are compared with those published by Morley (1963). The method is

simple, efficient and capable of yielding very accurate results for both displacement and stress.
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2. Elastic plate equations

The equations in this section are based on the Reissner–Mindlin theory of plates that is also known as

the first order shear deformation theory. The displacement components along the Cartesian axes at an
arbitrary point in the plate are denoted by u0, v0, and w0 respectively and are expressed as:
u0 ¼ uþ zb1; v0 ¼ vþ zb2; w0 ¼ w: ð1Þ

In the above equations, symbols u, v, and w denote the displacement components at the middle plane of the

plate in x, y, and z directions respectively; b1 and b2 are the components of rotation of the normal to the
middle plane that is also referred to as the reference plane; and z is the distance measured from the reference

plane in the direction perpendicular to the plate. For the plate bending problems, the in-plane displacement

components u and v are assumed to be zero i.e. no stretching of the middle plane. After dropping u and v
from Eq. (1), it can be expressed in the matrix form as
fu0g ¼ ½Z1�fDg; ð2Þ

where
fu0gT ¼ f u0 v0 w0 g; fDgT ¼ fw b1 b2 g;

and
½Z1� ¼
0 z 0

0 0 z
1 0 0

2
4

3
5:
The strain–displacement relationship is derived as:
fe0g ¼ ½Z�fXg; ð3Þ

where
fe0gT ¼ e0x e0y c0xy c0yz c0zx
n o

;

fXgT ¼ f cyz czx jx jy jxy g;

cyz ¼
ow
oy

þ b2; czx ¼
ow
ox

þ b1;

akx ¼
ob1

ox
; aky ¼

ob2

oy
; akxy ¼

ob1

oy
þ ob2

ox
;

ð4Þ
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0 0 z 0 0

0 0 0 z 0

0 0 0 0 z
1 0 0 0 0
0 1 0 0 0

2
66664

3
77775; ½d�T ¼

o
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o

ox
0 0 0

0 1
o
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0

o
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1 0 0
o
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o

ox

2
6666664

3
7777775
:

In the above equation, displacement (w) and coordinates (x; y) are normalized with respect to one of the

plate’s principal dimensions, e.g. the length (a) of a rectangular plate or the major axis (a) of an elliptic
plate. This provides non-dimensional form to the above equations.

The strain–curvature vector, fXg is further expressed as
fXg ¼ ½d�fDg: ð5Þ
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Strain energy under a given state of stress (or strain) for an infinitesimal volume dxdy dz is given by
dU ¼ 1

2
fe0gT½E�fe0gdxdy dz or dU ¼ 1

2
fXgT½Z�T½E�½Z�fXgdxdy dz: ð6Þ
In the above, matrix ½E� is the fifth order and composed of the elastic modulus (E) and the Poisson’s ratio

(m). Its non-zero terms are as follows.
E11 ¼ E22 ¼
E

1� m2
; E12 ¼ E21 ¼ mE11; E33 ¼

E
2ð1þ mÞ ; and E44 ¼ E55 ¼ kE33: ð7Þ
The shear correction factor (k ¼ 5=6) is used in the matrix to compensate for the parabolic distribution of

the transverse shear stress along the thickness of the plate. Integration of Eq. (6) over the thickness of the

plate, gives
U ¼ 1

2

ZZ
Area

fXgT½D�fXgdxdy; ð8Þ
where ½D�8�8 is composed of the thickness and elastic properties of the plate.
½D� ¼
Z þh

2

�h
2

½Z�T½E�½Z�dz: ð9Þ
The non-zero terms in ½D�5�5 are given below.
D11 ¼ D22 ¼ ð1=2Þð1� mÞk K0; D33 ¼ D44 ¼ D0;

D34 ¼ D43 ¼ mD0; D55 ¼
1� m
2

� �
D0;

K0 ¼
Eh

1� m2
; D0 ¼

Eh3

12ð1� m2Þ :

ð10Þ
A numerical solution procedure is developed in this investigation for the analysis of plate bending prob-
lems. The method is described below in various steps.

Displacement fields. A quadrilateral region with four curved edges defines the geometry of the plate in

x–y plane as shown in Fig. 1. The region represents the middle surface of the plate with the thickness (h)
which is assumed to be uniform and small in comparison with the other dimensions along x and y axes.

Fig. 1 shows 9 points which represent the geometric nodes at the middle plane and their coordinates

ðxi; yiÞ with i ¼ 1; 2; 3; . . . ; 9 are prescribed. The shape functions Niðn; gÞ with i ¼ 1; 2; 3; . . . ; 9 are used for

the interpolation of coordinates (x; y) of an arbitrary point inside the quadrilateral region, (Weaver and

Johnston, 1984). The dimensionless coordinates n and g that are also known as natural coordinates are
bounded by �16 ðn; gÞ6 þ 1. The coordinates (x; y) can be interpolated by the following equations.
xðn; gÞ ¼
X9

i¼1

Niðn; gÞxi;

yðn; gÞ ¼
X9

i¼1

Niðn; gÞyi:
ð11Þ
The above interpolating scheme will be used in setting up the displacement fields in the following manner.

The displacement field is defined by high order polynomials in comparison with the ones used for the

geometric interpolation. Only one displacement field defines the displacement components ðw; b1; b2Þ in
whole region of the plate. In other words the high order polynomials represent the displacement field of the

whole plate as one element. A different set of nodes is introduced and each node has three degrees of
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Fig. 1. A quadrilateral boundary represented by nine points.
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freedom corresponding to w, b1, and b2. The x and y coordinates of the displacement nodes are obtained

using the geometric interpolation equation (11). The values of these three components are interpolated by

the following equations.
w ¼
Xn

i¼1

fiðx; yÞWi ;

b1 ¼
Xn

i¼1

fiðx; yÞhi;

b2 ¼
Xn

i¼1

fiðx; yÞ/i:

ð12Þ
In the above equations, fiðx; yÞ is the displacement shape function and the indices Wi , hi; and /i represent w,
b1, and b2 respectively at the ith displacement node. The displacement nodes are introduced in the whole

plate region using Eq. (11) which involves polynomials in each n and g. If p and q denote the orders of the

polynomials in x and y, the number of displacement nodes required is: n ¼ ðp þ 1Þðqþ 1Þ. Eq. (12) can be

expressed in matrix form as
fDgT ¼ ½ f1ðx; yÞ� ½ f2ðx; yÞ� ½ f3ðx; yÞ� � � � � � � ½ fnðx; yÞ�½ �; fCg ð13Þ
where fDgT ¼ fw b1 b2 g,
fCgT ¼ W1 h1 /1 W2 h2 /2 � � � Wn hn /nf g:
Matrix ½fiðx; yÞ�3�3 is given below.
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½fiðx; yÞ� ¼
fiðx; yÞ 0 0

0 fiðx; yÞ 0

0 0 fiðx; yÞ

2
4

3
5: ð14Þ
Substituting Eq. (14) into Eq. (5), we can write
fXg ¼ ½d�½fiðx; yÞ�fCg ¼ ½B�fCg; ð15Þ
where ½B�3�n ¼ ½d�½fiðx; yÞ� and is not presented in its detailed form because of large size.

Using Eq. (15), the strain energy expression can be written as
U ¼ 1
2
fCgT½K�fCg: ð16Þ
In the above equation, matrix ½K� represents the stiffness matrix of the whole plate and can be expressed as
½K� ¼
Z x2

x1

Z y2ðxÞ

y1ðxÞ
½B�T½D�½B�dy dx: ð17Þ
Integration of the above expression for the stiffness matrix covering the entire domain of the plate will be

carried out numerically using the Gauss-method. In this integration method the number of integration

points and corresponding weights depends on the order of polynomial used to define the displacement field.

The plate subjected to distributed loads will be solved with the help of load vectors that can be derived in

the following manner.

Consistent load vector. Consider the plate subjected to a uniformly distributed transverse load of

intensity p0 on the plate as shown in Fig. 1. The work-done by this load against the plate under the assumed

displacement field can be expressed as
W ¼
Z Z

Area

p0wdxdy ¼ p0
Xn

i¼1

Wi

Z x2

x1

Z y2ðxÞ

y1ðxÞ
fiðx; yÞdy dx: ð18Þ
Functions y1ðxÞ and y2ðxÞ represent the lower and upper boundaries respectively of the plate. In the above

expression, the load vector fpg that is composed of the load components associated with each Wi can be

expressed as
fpg ¼ p0

Z x2

x1

Z y2ðxÞ

y1ðxÞ
fiðx; yÞdy dx: ð19Þ
Integration will be done using the same Gaussian quadrature method. Eq. (18) can be written in the vector

form as
W ¼ fWigTfpg ð20Þ
The variation of the above is given below.
dW ¼ fdCgTfpg: ð21Þ

The above equation will be used in the equilibrium equation.

Equilibrium condition. The work-energy principle is used to derive the equilibrium equation. If potential

energy of the plate is denoted by P, then we can write P ¼ U � W . Where, U and W respectively are the

strain energy of the plate and the work-done on the plate under the assumed displacement field. For the

stable equilibrium of the plate the potential energy must be at a minimum. That means dP ¼ 0, which is

expressed below.
fdCgTð½K�fCg � fpgÞ ¼ 0: ð22Þ
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The solution of the above equation gives the displacement components of the plate at each displacement

node.

Analysis of the plate with an opening. Here, like the above case of plates (i.e. without hole), the whole

plate region is considered as one element. First the plate is considered to be without hole and the stiffness
matrix of the whole region of the plate is calculated by using Eq. (17). The stiffness matrix of the plate

without hole is expressed as
½K1� ¼
Z x2

x1

Z y2ðxÞ

y1ðxÞ
½B�T½D�½B�dxdy: ð23Þ
The geometry in Fig. 2 is the same as of Fig. 1 except it has an opening with an arbitrary shape. All the

equations derived in the above section of the paper will be used for the analysis of the plate with holes. The
stiffness matrix of the opening is found by using Eq. (17), but with different integration limits. As shown in

Fig. 2, the integration limit in the x direction is from x3 to x4 while the integration limit in the y direction is

defined by the equation of the curve that defines the shape of the opening. So the stiffness matrix of the

opening can be expressed by the following equation.
½K2� ¼
Z x4

x3

Z g2ðxÞ

g1ðxÞ
½B�T½D�½B�dy dx: ð24Þ
It should be noted that integration in Eq. (24) is carried over the area of the patch or the hole. Matrices ½K1�
and ½K2� are of the same order, as the same functions are used in both cases.

Now a new stiffness matrix is introduced that is equivalent to the stiffness matrix of the plate with hole.

This matrix is nothing, but the difference of matrices ½K1� and ½K2�. In this paper it is referred to as the

‘‘equivalent stiffness matrix’’.
½Ke� ¼ ½K1� � ½K2�: ð25Þ
Fig. 2. Patch (or hole) shown in a quadratic domain.
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Uniformly distributed load acting in the transverse direction of the plate can be expressed as
fp1g ¼ p0

Z x2

x1

Z y2ðxÞ

y1ðxÞ
fiðx; yÞdy dx; ð26Þ

fp2g ¼ p0

Z x4

x3

Z g2ðxÞ

g1ðxÞ
fiðx; yÞdy dx: ð27Þ
In the above expressions, vectors fp1g and fp2g correspond to the load acting on the whole plate without

opening and only on the region of the hole, respectively. Now a new load vector is introduced, which acts

on the plate with opening. This vector is, in fact, the difference of vectors fp1g and fp2g. Again, it is called as

the ‘‘equivalent load vector’’ and expressed as follows.
½pe� ¼ ½p1� � ½p2�: ð28Þ
For the equilibrium condition, Eq. (22) is used with new stiffness and load vectors. That can be written as
fdCgTð½Ke�fCg � fpegÞ ¼ 0: ð29Þ
The solution of the above equation gives the displacement components over the whole plate region,
including the hollow part of the plate. The displacement components within the opening region are ficti-

tious. The displacement and stress components are obtained by using interpolation functions.
3. Numerical results

The method presented in this paper is applied to the linear static analysis of rectangular, circular,

elliptical and skew plates subjected to the uniformly distributed load over the entire plate or over a patch of

the plate geometry. In case of the plate with an opening, the plate is assumed to be loaded uniformly over its

surface area and the hole is incorporated in the analysis through negative stiffness and load parameters, as

discussed earlier in this paper. A computer program has been developed in object oriented C++ computing

environment with double precision. Shown in Figs. 3 and 4 are rectangular and elliptical plates respectively

with circular and rectangular patches (or holes). A typical patch (or hole) is defined by its geometric center
located atðx0; y0Þ as shown. The circular patch/hole is further defined by its radius R. Similarly, the rect-

angular patch/hole is defined by its sides c and d. The geometry of the rectangular and skew plates is defined

using 9 points and the same number of shape functions, Eq. (11). Similarly, the geometries of circular and

elliptical plates are defined by 9, 16 and 25 points for which quadratic, cubic and fourth order polynomials

respectively in each of n and g directions are used. Eq. (11) is then used to find the Cartesian coordinates of

the displacement grid points, which are further used in Eq. (12) for the displacement shape functions. For

generating the shape functions given in Eq. (12) equal values for both p and q are used in the following

calculations. It is found that the use of the fourth order polynomials yields very accurate representation of
the circular region which is represented by 25 geometric nodes as shown in Fig. 5. Numerical results ob-

tained from the present method are compared with the exact results (Timoshenko and Woinowsky-Krieger,

1959). Results for the cases with patch loadings and holes are obtained by the present method and then

compared with those obtained by a commercial computer code I-DEAS. The value of the Poisson’s ratio

m ¼ 0:3 is used in the following calculations.

Rectangular plate. The method is evaluated on uniformly loaded rectangular plates of length a and width

b with clamped and simply-supported edges for which the numerical results are available in the monograph

of Timoshenko and Woinowsky-Krieger (1959). Values of the geometric and material’s parameters used in
the calculation are: a ¼ 1:0 (m), E ¼ 1:0 (MPa), h ¼ 0:01 (m) and q ¼ 1:0 (Pa). Tenth order polynomial in
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each of x and y is used in defining the displacement fields corresponding to ðw; b1; b2Þ. This order of

polynomials requires 121 displacement nodes and 363th order matrix to obtain displacement. Displacement

restraints are applied to the nodes that lie on the boundary. Table 1 contains results pertaining to the

transverse deflection at the center of the plate and bending moments at the center as well as the middle

points A and B as shown in Fig. 3, of the edges for the uniformly loaded rectangular plates with built in

edges from the two sources mentioned above. The aspect ratio (b=a) in this table varies from 1.0 to 2.0. A
similar set of results is presented in Table 2 for the simply-supported case with aspect ration (b=a) varying
from 1.0 to 1. It is seen that the present method yields results, which are in excellent agreement with the

exact results (Timoshenko and Woinowsky-Krieger, 1959).

Square plate with square or circular opening. For this case, the length of the plate a ¼ 1 (m), thickness

h ¼ 0:01 (m), E ¼ 1 (MPa), m ¼ 0:3, the load magnitude of q ¼ 1:0 (Pa), radius r ¼ 0:075 (m) for the cir-

cular opening and center at (0.25 m, 0.25 m) are chosen for the calculation. It is expected that a doubly

connected plate of this type will require very high order polynomials for the displacement fields to obtain

accurate results. Also, for this type of plate numerical results are not readily available in the open literature.
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Table 1

Deflections (m) and bending moments (Nm/m) in a uniformly loaded rectangular plate with built in edges

b=a Displacement w0 ðMxÞA ðMyÞB
Present Exact Present Exact Present Exact

1.0 0.0138 0.0138 )0.0514 )0.0513 )0.0514 )0.0513
1.1 0.0165 0.0164 )0.0582 )0.0581 )0.0539 )0.0538
1.2 0.0189 0.0188 )0.0640 )0.0639 )0.0554 )0.0554
1.3 0.0209 0.0209 )0.0688 )0.0687 )0.0563 )0.0563
1.4 0.0226 0.0226 )0.0727 )0.0726 )0.0568 )0.0568
1.5 0.0240 0.0240 )0.0758 )0.0757 )0.0570 )0.0571
1.6 0.0252 0.0251 )0.0782 )0.0780 )0.0571 )0.0571
1.7 0.0252 0.0260 )0.0800 )0.0799 )0.0571 )0.0571
1.8 0.0268 0.0267 )0.0813 )0.0812 )0.0571 )0.0571
1.9 0.0273 0.0272 )0.0823 )0.0822 )0.0570 )0.0571
2.0 0.0277 0.0277 )0.0830 )0.0829 )0.0570 )0.0571

ðMxÞ0 ðMyÞ0
Present Exact Present Exact

1.0 0.0229 0.0231 0.0229 0.0231

1.1 0.0267 0.0264 0.0232 0.0231

1.2 0.0300 0.0299 0.0228 0.0228

1.3 0.0327 0.0327 0.0222 0.0222

1.4 0.0350 0.0349 0.0213 0.0212

1.5 0.0368 0.0368 0.0203 0.0203

1.6 0.0382 0.0381 0.0193 0.0193

1.7 0.0393 0.0392 0.0183 0.0182

1.8 0.0401 0.0401 0.0174 0.0174

1.9 0.0407 0.0407 0.0165 0.0165

2.0 0.0412 0.0412 0.0158 0.0158

Table 2

Deflections (m) and bending moments (Nm/m) in a uniformly loaded rectangular plate with simply supported edges

b=a Present ðwÞ0 Exact ðwÞ0 Present ðMxÞ0 Exact ðMxÞ0 Present ðMyÞ0 Exact ðMyÞ0
1.0 0.0444 0.0443 0.0479 0.0479 0.0479 0.0479

1.1 0.0532 0.0530 0.0555 0.0553 0.0493 0.0494

1.2 0.0617 0.0616 0.0627 0.0626 0.0501 0.0501

1.3 0.0698 0.0697 0.0694 0.0693 0.0503 0.0504

1.4 0.0774 0.0770 0.0755 0.0753 0.0502 0.0506

1.5 0.0844 0.0843 0.0812 0.0812 0.0498 0.0499

1.6 0.0908 0.0906 0.0862 0.0862 0.0493 0.0493

1.7 0.0965 0.0964 0.0908 0.0908 0.0486 0.0486

1.8 0.1018 0.1017 0.0948 0.0948 0.0479 0.0479

1.9 0.1065 0.1064 0.0985 0.0985 0.0471 0.0471

2.0 0.1106 0.1106 0.1017 0.1017 0.0464 0.0464

3.0 0.1336 0.1336 0.1189 0.1189 0.0406 0.0404

4.0 0.1400 0.1400 0.1235 0.1235 0.0384 0.0384

5.0 0.1416 0.1416 0.1245 0.1246 0.0375 0.0375

1 0.1481 0.1422 0.1301 0.1250 0.0390 0.0375
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Therefore, the present formulation is evaluated against the typical finite element analysis (FEA) using
eight-node mapped element from I-DEAS. Before proceeding with further cases, a convergence study is

carried out for a clamped uniformly loaded plate with a circular opening in its first quadrant. Table 3



Table 3

Convergence study for a uniformly loaded square plate with built in edges and a circular opening at ðx0; y0Þ ¼ ð0:25; 0:25Þ
Present method I-DEAS

nðpÞ w0 (m) ðrxxÞ0 (Pa) n (NEL) w0 (m) ðrxxÞ0 (Pa)

25(4) )0.0144 )1643.07 453(112) )0.01379 )1413.0
36(5) )0.0144 )1639.31 670(175) )0.01379 )1396.0
49(6) )0.0137 )1373.64 929 (252) )0.01379 )1387.0
64(7) )0.0137 )1374.38 1230(343) )0.01379 )1387.0
81(8) )0.0137 )1376.94
100(9) )0.0137 )1376.99
121(10) )0.0137 )1376.87
144(11) )0.0137 )1376.97
169(12) )0.0137 )1372.52
196(13) )0.0137 )1372.74
225(14) )0.0138 )1369.52
256(15) )0.0137 )1362.52
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contains values of the deflection and bending stresses at the center of the plate against the number of the
displacement nodes (n), with the order of the polynomial (p or q) in the parenthesis. The results are con-

verging for the deflection w0 as well as the stress ðrxxÞ0. Stress ðryyÞ0 is found equal to ðrxxÞ0 in the calcu-

lation and hence not presented here. Similar convergence study is shown for the case of the FEA in this

table. The indicator used for the convergence is again the number of nodal points (n) used in the FE model

and the number of elements (NEL) is given in the parenthesis.

Values of the stresses obtained from the present method and the FEA at various locations, i.e. the middle

points A–D of the edges and the center O as shown in Fig. 3, are presented in Table 4 for the case of fully

clamped square plate subjected to uniformly distributed load and having circular and square openings. It is
seen that the normal stresses rxx and ryy are in excellent agreement. The shear stresses are found to be

negligibly small compared to the normal stresses and hence are not included in the table. Fourteenth order

polynomial in each of x and y is used in generating the displacement fields using 225 displacement nodes.

Number of nodes used in the I-DEAS model is 2111. The deflection w0 at the center of the fully clamped

plate from the present study and the I-DEAS are )13.72 · 10�3 (m) and )13.83 · 10�3 (m) respectively for
Table 4

A uniformly loaded square plate with built in edges and a circular/square opening at ðx0; y0Þ ¼ ð0:25 m; 0:25 mÞ
Location (x; y) I-DEAS rxx Present rxx I-DEAS ryy Present ryy

Square hole

0.50,0.0 2987.00 2981.24 900.80 894.37

)0.50,0.0 3056.00 3064.35 922.20 919.30

0.0,0.50 900.80 894.46 2987.00 2981.55

0.0,)0.50 922.20 919.26 3056.00 3064.18

0.0,0.0 )1383.00 )1368.53 )1383.00 )1368.49

Circular hole

0.50,0.0 3000.00 2999.74 904.80 899.92

)0.50,0.0 3054.00 3067.20 921.80 920.16

0.0,0.50 904.80 900.03 3000.00 3000.10

0.0,)0.50 921.80 920.11 3054.00 3067.03

0.0,0.0 )1374.00 )1369.52 1374.00 )1369.52

a ¼ b ¼ 1:0 (m), c ¼ d ¼ 0:15 (m), E ¼ 1:0 (MPa), q ¼ 1:0 (Pa), m ¼ 0:3 and h ¼ 0:01 (m).
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the square hole. Similarly, the results from the two sources for the circular hole are )13.76 · 10�3 (m) and

)13.75 · 10�3 (m) respectively.

For the all sides simply supported case, the values of w0; ðrxxÞ0 and ðryyÞ0 are calculated at the center

ð0:0; 0:0Þ and given in the following.
Table

Stresse

Loc

Squa

0.50

)0.5
0.0,0

0.0,)
0.0,0

Circ

0.50

)0.5
0.0,0

0.0,)
0.0,0

a ¼ b ¼
Square hole : w0 ¼ �44:70� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �2862:74 ðPaÞ ðpresentÞ;
w0 ¼ �44:93� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �2868:00 ðPaÞ ðI-DEASÞ;

Circular hole : w0 ¼ �44:59� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �2863:11 ðPaÞ ðpresentÞ;
w0 ¼ �44:93� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �2866:00 ðPaÞ ðI-DEASÞ:
Stresses at the mid-edge points are found to be too small for this case to be presented.

Square plate with a square or circular patch loading. For this a square plate with uniform load p on a

small square with c ¼ d ¼ 0:25 (m) and center located at (0.25 m, 0.25 m) is analyzed. Similarly, a square

plate with uniform load p on a small circular area of radius r ¼ 0:125 (m) and center at (0.25 m, 0.25 m) has

been analyzed by both methods. Values of the stresses at middle points A–D of the edges of the plate as well

as at the center O (Fig. 3) are presented in Table 5 for the fully clamped case. It is seen that the normal

stresses rxx and ryy are in excellent agreement. Twelfth order polynomial in each of x and y is used in
generating the displacement fields of 169 displacement nodes. Number of nodes used in the I-DEAS model

is 1559. The deflection ðw0Þ at the center of the fully clamped plate from the present study and the I-DEAS

are )0.8442 · 10�3 (m) and )0.8443 · 10�3 (m) respectively for the square patch load. For the all sides

simply supported case, the values of w0, ðrxxÞ0 and ðryyÞ0 are calculated at the center ð0:0; 0:0Þ and are given

as:
w0 ¼ �3:132� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �171:5 ðPaÞ ðpresentÞ;
w0 ¼ �3:132� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �171:3 ðPaÞ ðI-DEASÞ:
The deflection w0 from the two sources for the circular patch load are )0.6615 · 10�3 (m) and
)0.6613 · 10�3 (m) respectively. For the all sides simply supported case, the values of w0, ðrxxÞ0 and ðryyÞ0
are calculated at the center ð0:0; 0:0Þ and are given as:
w0 ¼ �2:483� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �134:0 ðPaÞ ðpresentÞ;
w0 ¼ �2:483� 10�3 ðmÞ; ðrxxÞ0 ¼ ðryyÞ0 ¼ �134:2 ðPaÞ ðI-DEASÞ:
5

s (Pa) in a partially loaded (square/circular patch ðx0; y0Þ ¼ ð0:25 m; 0:25 mÞ square plate with built in edges

ation (x; y) I-DEAS rxx Present rxx I-DEAS ryy Present ryy

re patch

,0.0 313.00 312.63 93.50 93.79

0,0.0 72.87 72.35 22.18 21.71

.50 93.50 93.79 313.00 312.63

0.50 22.18 21.71 72.87 72.35

.0 )59.50 )59.64 )59.50 )59.64

ular patch

,0.0 246.50 245.91 73.63 73.77

0,0.0 56.45 55.48 17.18 16.64

.50 73.63 73.78 246.50 245.92

0.50 17.18 16.64 56.45 55.48

.0 )45.20 )44.98 )45.20 )44.98

1:0 (m), c ¼ d ¼ 0:25 (m), E ¼ 1:0 (MPa), q ¼ 1:0 (Pa), m ¼ 0:3 and h ¼ 0:01 (m).
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The agreement between the results from the present method and those from I-DEAS is very good for the

above cases with patch loadings on the square plate and with opening in the square plate.

Circular and elliptic plates. In this section, a modeling procedure for the analysis of elliptic plates with the

same load types and openings as the square plates is presented. The circular plate is a special case of the
elliptic one. Fig. 4 shows appropriate geometric parameters for the plate as well as the circular and square

patches which can be treated either as the loading areas or the openings. An elliptic plate is first mapped

into a circle of radius unity using the transformation x ¼ a cos h and y ¼ b sin h. Here, a¼ the major axis,

b¼ the minor axis and h¼ the angle from the positive x-axis. On and inside this circle, the geometric nodes,

the number of which depends on the order of polynomials in n and g, are prescribed first to find the shape

functions given in Eq. (11), which is then used to define displacement nodes. Using the displacement nodes,

the shape functions in x and y as given in Eq. (12) are generated and used in the numerical calculations.

To understand the effects of the number of geometric nodes on the accuracy of the results, clamped and
simply supported elliptic plates subjected to uniformly distributed loads are analyzed using 9, 16 and 25

geometric nodes. Numerical values of deflection and bending stresses (for the circular plate)/bending

moments (for the elliptic plate) at points O, A and B as shown in Fig. 4 are presented in Tables 6 and 7
Table 6

Deflection (m) and Stresses (Pa) in a circular plate subjected to UDL on the lower face of plate

Parameter Present method––geometric points Exact solution

9 16 25

Clamped boundary conditions (8th order polynomial)

w0 )0.010228 )0.0107308 )0.0106855 )0.0106641
ðrxxÞA )1659.51 )1875.58 )1874.00 )1875.00
ðryyÞA )507.99 )555.80 )561.52 )562.50
ðrxxÞB )508.08 )555.90 )561.61 )562.50
ðryyÞB )1659.78 )1875.91 )1874.32 )1875.00
ðrxxÞ0 1198.03 1211.21 1218.66 1218.75

ðryyÞ0 1198.03 1211.21 1218.66 1218.75

Simply supported boundary conditions (10th order polynomial)

w0 )0.041996 )0.0435972 )0.0435013 )0.0434766
ðrxxÞ0 3025.93 3097.72 3093.99 3093.75

ðryyÞ0 3025.93 3097.72 3093.99 3093.75

Table 7

Bending moments in an elliptical plate with built in edges subjected to UDL

Parameter Present method number of geometric nodes Exact solution

9 16 25

Clamped boundary conditions

w0 )0.0036489 )0.0037899 )0.0037759 )0.0037592
ðMxÞ0 )0.0091525 )0.0091256 )0.0092380 )0.0092266
ðMyÞ0 )0.0137715 )0.0140048 )0.0140638 )0.0140477
ðMxÞa 0.0091648 0.0105601 0.0110124 0.0110159

ðMyÞb 0.0236693 0.0228876 0.0250052 0.0247907

Simply supported boundary conditions

w0 )0.0150390 )0.0155819 )0.0155463 )0.0155493
ðMxÞ0 )0.0237780 )0.0240762 )0.0241004 )0.0246617
ðMyÞ0 )0.0342234 )0.0351622 )0.0350654 )0.0356595

a ¼ 0:50 m, b ¼ 0:33333 m (12th order polynomial).
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respectively for the uniformly loaded circular and elliptic plates for which exact results are available in the

monograph of Timoshenko and Woinowsky-Krieger (1959). An excellent agreement between the results

from the two different sources is found for both clamped and simply supported conditions. The case with 25

geometric nodes yields better results and hence this is used in the following calculations.
Clamped circular and elliptic plates subjected to patch loadings are analyzed by the present method

using 14th order polynomial in each of x and y for the displacement fields. This requires 225 displacement

nodes each having three degrees of freedom and the order of the resulting stiffness matrix is 675. The

coordinates ðx0; y0Þ of the centroids of the patch are: (0.1768 m, 0.1768 m) for the circular plate and

(b=2; b=2) for the elliptic plate. Circular and elliptic plates are also analyzed by I-DEAS using 1585 and

1934 nodes in the models respectively and the results are presented in Tables 8 and 9. The displacement w0

at ð0:0; 0:0Þ are as follows.

Circular plate:
Table

Circula

R ¼ 0:

Loc

Squa

0.50

)0.5
0.0,0

0.0,)
0.0,0

Circ

0.50

)0.5
0.0,0

0.0,)
0.0,0

Table

Stresse

a=b ¼
Loc

Squa

0.50

)0.5
0.0,0

0.0,)
0.0,0

Circ

0.50

)0.5
0.0,0

0.0,)
0.0,0
Square patch load : w0 ¼�1:311� 10�3 ðmÞ ðpresentÞ and w0 ¼�1:319� 10�3 ðmÞ ðI-DEASÞ;
Circular patch load : w0 ¼�1:037� 10�3 ðmÞ ðpresentÞ and w0 ¼�1:045� 10�3 ðmÞ ðI-DEASÞ:
8

r plate with built in edges subjected to uniformly distributed load on a patch with: c ¼ d ¼ 0:25 (m), for the square patch and

125 (m) for the circular patch ðx0 ¼ y0 ¼ 0:1768 mÞ
ation (x; y) I-DEAS rxx Present rxx I-DEAS ryy Present ryy

re patch

,0.0 301.00 298.51 89.65 89.64

0,0.0 87.42 86.27 26.09 25.92

.50 89.65 89.60 301.00 298.36

0.50 26.09 26.08 87.42 86.82

.0 )132.10 )132.80 )132.10 132.90

ular patch

,0.0 237.10 232.35 70.66 69.77

0,0.0 68.39 69.63 20.42 20.92

.50 70.65 69.38 237.10 231.05

0.50 20.42 21.48 68.39 71.51

.0 )100.80 )99.33 )100.80 )99.36

9

s in an elliptical plate with built in edges subjected to UDL on the patch (ðx0; y0Þ ¼ ðb=2; b=2Þ), c ¼ d ¼ 0:150 m, R ¼ 0:075 m,

1:5

ation (x; y) I-DEAS rxx Present rxx I-DEAS ryy Present ryy

re patch

,0.0 33.56 32.50 10.04 9.78

0,0.0 3.62 5.24 1.13 1.58

.50 32.57 33.12 110.10 110.36

0.50 10.63 10.87 35.52 36.21

.0 )17.25 )18.22 )31.55 )32.11

ular patch

,0.0 26.09 25.27 7.82 7.60

0,0.0 2.79 4.17 0.87 1.26

.50 25.54 25.90 86.42 86.30

0.50 8.29 8.38 27.68 27.92

.0 )13.10 )13.67 )24.36 )24.88
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Elliptic plate:
:

Table

Circul

Loc

Squ

0.50

)0.5
0.0,

0.0,

0.0,

Circ

0.50

)0.5
0.0,

0.0,

0.0,

c ¼ d

Table

Stresse

a=b ¼
Loc

Squ

0.50

)0.5
0.0,

0.0,

0.0,

Circ

0.50

)0.5
0.0,

0.0,

0.0,
Square patch load : w0 ¼ �1:819� 10�4 ðmÞ ðpresentÞ and w0 ¼ �1:815� 10�4 ðmÞ ðI-DEASÞ;
Circular patch load : ðw0 ¼ �1:424� 10�4 ðmÞ ðpresentÞ and w0 ¼ �1:422� 10�4 ðmÞ ðI-DEASÞ
Tables 10 and 11 present the values of stresses in the same manner as in Tables 8 and 9 respectively for
the uniformly loaded circular and elliptic plates clamped at the boundary with square and circular open-

ings. The values of displacement w0 at ð0:0; 0:0Þ are:
Circular plate case:
Square hole : w0 ¼ �10:47� 10�3 ðmÞ ðpresentÞ and w0 ¼ �10:61� 10�3 ðmÞ ðI-DEASÞ;
Circular hole : w0 ¼ �10:51� 10�3 ðmÞ ðpresentÞ and w0 ¼ �10:59� 10�3 ðmÞ ðI-DEASÞ:
Elliptic plate case:
Square hole : w0 ¼ �10:4722� 10�3 ðmÞ ðpresentÞ and w0 ¼ �10:61� 10�3 ðmÞ ðI-DEASÞ;
Circular hole : w0 ¼ �10:5128� 10�3 ðmÞ ðpresentÞ and w0 ¼ �10:59� 10�3 ðmÞ ðI-DEASÞ:
10

ar plate with built in edges subjected to UDL

ation (x; y) I-DEAS rxx Present rxx I-DEAS ryy Present ryy

are hole

,0.0 1821.00 1785.48 541.50 535.10

0,0.0 1858.00 1879.99 549.20 563.45

0.50 541.60 535.73 1821.00 1787.58

)0.50 549.20 564.18 1858.00 1882.42

0.0 )1192.00 )1201.72 )1192.00 )1201.72

ular hole

,0.0 1830.00 1802.91 542.90 540.33

0,0.0 1861.00 1882.80 550.00 564.29

0.50 542.90 540.85 1830.00 1804.65

)0.50 550.00 564.79 1861.00 1884.46

0.0 )1196.00 )1206.83 1196.00 )1206.81

¼ 0:125 m, R ¼ 0:0625 m (x0 ¼ y0 ¼ 0:1768 m).

11

s in an elliptical plate with a hole (ðx0; y0Þ ¼ ðb=2; b=2Þ), c ¼ d ¼ 0:10 m, R ¼ 0:05 m, with built in edges subjected to UDL,

1:5

ation (x; y) I-DEAS rxx Present rxx I-DEAS ryy Present ryy

are hole

,0.0 647.40 637.23 188.50 191.56

0,0.0 659.30 649.53 190.40 195.25

0.50 434.90 446.24 1453.00 1486.98

)0.50 441.20 451.10 1477.00 1503.20

0.0 )553.30 )553.70 )843.60 )836.41

ular hole

,0.0 645.60 640.74 186.30 192.61

0,0.0 657.00 652.03 188.40 196.00

0.50 434.80 447.72 1455.00 1491.90

)0.50 439.20 451.88 1472.00 1505.77

0.0 )556.80 )553.67 )848.20 )837.60



Table 13

Stresses at ð0:0; 0:0Þ in an elliptical plate with a hole (ðx0; y0Þ ¼ ðb=2; b=2Þ) with simply supported edges subjected to UDL, a=b ¼ 1:5.

c ¼ d ¼ 0:10 m and R ¼ 0:05 m for the hole

Parameter Present I-DEAS Present I-DEAS

Square patch Circular patch

w0 )8.074e)04 )8.107e)04 )6.414e)04 )6.415e)04
ðrxxÞ0 )67.80 )67.06 )52.96 )52.62
ðryyÞ0 )100.33 )100.00 )78.57 )78.67

Square hole Circular hole

w0 )0.0157732 )0.0158900 )0.0157210 )0.0101574
ðrxxÞ0 )1459.88 )1449.00 )1459.44 )1451.00
ðryyÞ0 )2127.93 )2132.00 )1459.44 )1451.00

c ¼ d ¼ 0:15 m and R ¼ 0:075 m for the patch loading.

Table 12

Stresses at the geometric center of a circular plate with a hole or patch ðx0 ¼ y0 ¼ 0:1768 mÞ with simply supported edges subjected to

UDL

Parameter Present I-DEAS Present I-DEAS

Square patch Circular patch

w0 )5.021e)03 )5.018e)03 )3.994e)3 )3.993e)03
ðrxxÞ0 )346.80 )343.00 )269.91 )268.90
ðryyÞ0 )346.76 )343.00 )269.92 )268.90

Square hole Circular hole

w0 )0.04393 )0.04545 )0.04375 )0.04484
ðrxxÞ0 )3102.51 )3083.00 )3103.53 )3076.00
ðryyÞ0 )3102.51 )3083.00 )3103.53 )3076.00

c ¼ d ¼ 0:125 m and R ¼ 0:0625 m for the hole. c ¼ d ¼ 0:25 m and R ¼ 0:125 m for the patch loading.

α

O

a a

b

b

Fig. 6. Geometry of the skew plate.
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Simply supported boundary condition with patch loadings and also other cases with square and circular

openings are analyzed and results presented in Tables 12 and 13 respectively for the circular and elliptic

plates. Results at the geometric center O are reported only, as the values of the stresses and displacement at

points A through D are found to be negligibly small.

The values of the normal stresses rxx and ryy at points A–D and geometric center O of the plate as shown
in Fig. 4 from the present method and also from I-DEAS are in very good agreement. In the case of the



Table 14

Simply supported rhombic plate subjected to uniform transverse load

Morley (finite difference method) Present

a ni w0 Mmax Mmin pðniÞ w0 Mmax Mmin

Simply supported case

90 49 0.0443 0.0473 0.0473 (9)4 0.0448 0.0500 0.0500

81 0.0443 0.0475 0.0475 (16)5 0.0448 0.0500 0.0500

121 0.0443 0.0476 0.0476 (25)6 0.0444 0.0479 0.0479

169 0.0443 0.0477 0.0477 (36)7 0.0444 0.0479 0.0479

(49)8 0.0444 0.0479 0.0479

(64)9 0.0444 0.0479 0.0479

80 121 0.0422 0.0485 0.0444 (9)4 0.0424 0.0495 0.0475

(16)5 0.0426 0.0506 0.0464

(25)6 0.0423 0.0483 0.0446

(36)7 0.0423 0.0485 0.0446

(49)8 0.0423 0.0486 0.0447

(64)9 0.0423 0.0485 0.0448

60 121 0.0276 0.0427 0.0323 (9)4 0.0261 0.0400 0.0285

169 0.0277 0.0427 0.0325 (16)5 0.0273 0.0416 0.0303

(25)6 0.0277 0.0431 0.0324

(36)7 0.0279 0.0426 0.0342

(49)8 0.0280 0.0430 0.0346

(64)9 0.0280 0.0431 0.0343

50 121 0.0182 0.0364 0.0245 (9)4 0.0161 0.0321 0.0186

(16)5 0.0177 0.0336 0.0216

(25)6 0.0183 0.0367 0.0256

(36)7 0.0185 0.0371 0.0273

(49)8 0.0186 0.0361 0.0266

(64)9 0.0185 0.0359 0.0257

40 121 0.0100 0.0283 0.0165 (9)4 0.0081 0.0231 0.0110

169 0.0101 0.0283 0.0168 (16)5 0.0094 0.0250 0.0139

(25)6 0.0099 0.0282 0.0177

(36)7 0.0100 0.0288 0.0185

(49)8 0.0101 0.0279 0.0177

(64)9 0.0105 0.0288 0.0177

30 49 0.0038 0.0189 0.0086 (9)4 0.0030 0.0141 0.0056

81 0.0039 0.0191 0.0091 (16)5 0.0037 0.0161 0.0074

121 0.0041 0.0192 0.0094 (25)6 0.0039 0.0183 0.0096

169 0.0041 0.0192 0.0096 (36)7 0.0040 0.0185 0.0098

225 0.0042 0.0192 0.0098 (49)8 0.0041 0.0186 0.0097

(64)9 0.0039 0.0170 0.0085

ni ¼ number of internal nodes, p ¼ the order of the polynomial.
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elliptic plate with patch loadings, the magnitudes of the stresses are considerably small at point C ()0.50,
0.0 in Table 9) and the difference in the results from the two methods is seen in the range of 30–50%. The

displacement w0 is generally in excellent agreement for all of the above cases.

Skew plates. The present method is also evaluated against the results published by Morley (1963), who

published a short monograph providing the theory of elastic structure that is needed to solve skew plate

problems. The author provided analytical and finite difference solutions using polar and oblique coordinate
systems respectively for the uniformly loaded skew plates as shown in Fig. 6. Both the simply supported and

clamped boundary conditions were considered. Table 14 contains deflection w0 in (m) and principal



Table 15

Simply supported rhombic plate subjected to uniform transverse load

Morley (simple series solution) Present

a N w0 Mmax Mmin p w0 Mmax Mmin

Simply supported case

85 3 0.0438 0.0484 0.0464 4 0.0442 0.0501 0.0491

6 0.0438 0.0486 0.0466 5 0.0443 0.0507 0.0488

6 0.0439 0.0484 0.0467

7 0.0439 0.0486 0.0466

8 0.0439 0.0485 0.0466

9 0.0439 0.0486 0.0466

80 3 0.0423 0.0484 0.0448 4 0.0424 0.0495 0.0475

6 0.0423 0.0486 0.0448 5 0.0426 0.0506 0.0464

6 0.0423 0.0483 0.0446

7 0.0423 0.0485 0.0446

8 0.0423 0.0486 0.0447

9 0.0423 0.0485 0.0448

60 3 0.0280 0.0427 0.0330 4 0.0261 0.0400 0.0285

6 0.0280 0.0425 0.0333 5 0.0273 0.0416 0.0303

6 0.0277 0.0431 0.0324

7 0.0279 0.0426 0.0342

8 0.0280 0.0430 0.0346

9 0.0280 0.0431 0.0343

50 3 0.0186 0.0365 0.0251 4 0.0161 0.0321 0.0186

6 0.0188 0.0362 0.0258 5 0.0177 0.0336 0.0216

6 0.0183 0.0367 0.0256

7 0.0185 0.0371 0.0273

8 0.0186 0.0361 0.0266

9 0.0185 0.0359 0.0257

40 3 0.0103 0.0284 0.0172 4 0.0081 0.0231 0.0110

6 0.0105 0.0281 0.0180 5 0.0094 0.0250 0.0139

6 0.0099 0.0282 0.0177

7 0.0100 0.0288 0.0185

8 0.0101 0.0279 0.0177

9 0.0105 0.0288 0.0177

30 3 0.0043 0.0191 0.0101 4 0.0030 0.0141 0.0056

4 0.0044 0.0192 0.0105 5 0.0037 0.0161 0.0074

5 0.0044 0.0192 0.0107 6 0.0039 0.0183 0.0096

6 0.0044 0.0191 0.0108 7 0.0040 0.0185 0.0098

7 0.0045 0.0191 0.0108 8 0.0041 0.0186 0.0097

8 0.0045 0.0191 0.0108 9 0.0039 0.0170 0.0085

N ¼ number of terms in the series, p ¼ the order of the polynomial.
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bending moments Mmax and Mmin, both in (Nm/m), at the center O of the plate obtained by the finite

difference method in oblique coordinate system for skew angles 90–30�. The results are given against the

number of internal grid points considered in the finite difference solution. The results from the present

method are also presented in this table against number of internal displacement nodes. In Table 15, the

results presented by Morley (1963) are obtained analytically using series solution in polar coordinate

system. In general the agreement between the results from the two studies is very good. For small skew
angles, the discrepancy is slightly higher in the neighborhood of 12%. The present method agrees better

with the finite difference method used by Morley than the analytical method for the simply supported case.



Table 16

Clamped skew plates

Morley Present

a N a=b ¼ 1:0 a=b ¼ 1:25 a=b ¼ 1:5 a=b ¼ 2:0 p a=b ¼ 1:0 a=b ¼ 1:25 a=b ¼ 1:5 a=b ¼ 2:0

w0

75 2 0.0128 0.0178 0.0212 0.023 4 0.0026 0.0048 0.0077 0.0146

4 0.0123 0.0176 0.0211 0.0242 5 0.0107 0.0164 0.0209 0.0262

6 0.0122 0.0176 0.0211 0.0242 6 0.0120 0.0173 0.0209 0.0240

8 0.0122 7 0.0122 0.0176 0.0211 0.0240

8 0.0123 0.0176 0.0212 0.0242

9 0.0123 0.0176 0.0212 0.0242

60 4 0.0122 0.0142 0.0158 4 0.0012 0.0018 0.0039

5 0.0083 0.0107 0.0147

6 0.0114 0.0137 0.0158

7 0.0119 0.0141 0.0158

8 0.0120 0.0142 0.0158

9 0.0120 0.0142 0.0158

45 4 0.0068 0.0071 4 0.0006 0.0012

5 0.0045 0.0060

6 0.0064 0.0073

7 0.0067 0.0073

8 0.0067 0.0072

9 0.0067 0.0071

N ¼ number of terms in the series, p ¼ the order of the polynomial.
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However, the finite difference grid is much finer than the displacement grid used in the present analysis. The

results for the uniformly loaded clamped plate are presented in Table 16 and the agreement is excellent.

Here, Morley used the oblique coordinates in solving this problem.
4. Concluding remarks

Anumerical method using the concept of the finite element method has been presented in this paper for the

bending of complicated shaped plates. In this method the plate geometry and the displacements are expressed

in terms of higher order polynomials. The method utilizes two sets of nodal points, the first needed for the
coordinate interpolation and the second for defining the degrees of freedom. The method is truly numerical

where the integration is carried out using as many Gauss points as needed according to the order of the

polynomial used. It is unified in the sense that different complicated shaped plates can be analyzed using the

same algorithm. Numerical examples of rectangular, circular, elliptical and skew plates with clamped and

simply supported boundary conditions and subjected to uniformly distributed loads are considered in this

study. Extremely favorable comparisons of the numerical results are made with the exact solution found in

the monograph of Timoshenko and Woinowsky-Krieger (1959) and finite difference and simple series

solutions presented byMorley (1963). Uniformly loaded square and elliptic plates with offset patch loadings,
or with square and circular openings, are also analyzed and the results are compared with those from the finite

element analysis. Both displacements and stresses are accurately predicted by the present method.
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