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Abstract

An energy method is presented in this paper for the linear static analysis of first order shear deformable plates of
various shapes. In this method, the displacement fields are defined in terms of the shape functions, which correspond to
a set of predefined points and are composed of significantly high order polynomials. The positions of these points are
calculated by mapping the geometry using naturalized coordinates and the interpolating shape functions of second
order to fourth order polynomials. The displacement degrees of freedom are assigned to each of the displacement nodes.
The method is evaluated using the fully clamped and simply supported rectangular, circular and elliptic plates subjected
to uniformly distributed transverse load as examples for which the exact results are given in the monograph of Tim-
oshenko and Woinowsky-Krieger. Also presented in this paper is the analysis of the above three types of plates sub-
jected to eccentric square and circular patch loadings. Plates with eccentric square and circular openings are analyzed by
this method using the full plate model and the results compare extremely well with those obtained by finite element
methods. The cutout part of the plate is accommodated in the solution by superposing negative stiffness and load over
the area of the opening. Finally, skew plates with simply supported and clamped boundaries are analyzed and dis-
cussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The plate bending problems have been studied by great mathematicians and engineers of the last two
centuries. During the second half of the last century, the finite element method became the widely accepted
solution method for engineering problems and is being developed further for new applications and im-
proved accuracy. In the common version of the finite element method, the problem is solved using low
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order elements and the accuracy in the result is obtained through mesh refinement. This is the A-version of
the finite element method. Then the A—p version, also referred to as the hierarchical finite method, was
introduced during the seventies and early eighties of the last century. In this method mesh of a fixed order
finite element is used for the solution and the convergence is sought by increasing the degrees of the ele-
ments, while a constant mesh is maintained during the analysis. Bardell (1996) published a paper intending
to extend the application of the 42—p method for the analysis of an Euler-Bernoulli beam and to emphasize
the engineering approach rather than the mathematical procedure.

Recently, researchers have shown significant amount of interest in the numerical solution of engineering
problems without using a mesh. Belytschko et al. (1994, 1996) have published a series of papers on element
free Galerkin method. A method using a meshless spatial approximation based only on nodes was used by
El Ouatouati and Johnson (1999) to derive the stiffness and mass matrices for a three-dimensional simply
connected elastic body. Suetake (2002) proposed a simple element free method using Lagrange polynomial
without employing the moving least squares (MLS) and discussed solutions of elastic beam and plate
problems. A least squares approach was used by Mohr (2000) for the approximate polynomial solutions for
simply supported equilateral triangular and square plates. Chen et al. (2003) proposed an element free
Galerkin method for the free vibration analysis of laminated composite plates. They studied square,
elliptical and perforated plate as numerical examples.

The present work also deals with the meshless solution of plate bending problems using a single algo-
rithm based on the variational principles modified such that various shaped plates can be analyzed. The
method has been used to solve rectangular, circular, elliptical, and skew plate bending problems with simply
supported and clamped boundary conditions. Load cases considered herein include: uniform load on the
entire plate, or circular and rectangular eccentric patch loads. Both full plate and the one with an eccentric
opening are analyzed successfully. There is some limited number of published work using different methods
for this type of plate bending problems. Ollerton (1976) reported bending stresses in thin circular plates
having a single eccentric hole and mixtures of clamped and simply supported boundaries. The load cases
considered were: a concentrated force uniformly distributed round the inner boundary, moments about two
perpendiculars axes, and uniform pressure on the plate surface. An exact method of solution was presented
by Harik and Salamoun (1986) for rectangular plates subjected to uniform, patch, line and point loads and
with clamped and simply supported along two parallel edges and any combination of boundary conditions
along the remaining edges. Plates subjected to line and patch loads were also studied by Venkatesh and
Jirousek (1995) using hybrid-Trefftz element, the assumed displacement field of which satisfied the differ-
ential equilibrium conditions while the conformity was imposed in a weighted residual sense. Liew and Han
(1997) used differential quadrature method (DQM) to the bending analysis of simply supported shear
deformable skew plates subjected to uniformly distributed surface load.

In the present study, the plate geometry is defined using a number of grid points of prescribed coor-
dinates and then the natural coordinates are used to derive the shape functions, which can be used in
interpolating the Cartesian coordinates of a point on and within the plate boundary. The displacement field
is introduced in Cartesian coordinates using very high order polynomials in comparison with those that are
used for the geometry. Depending upon the order of the displacement field functions, a set of nodal points
is generated using the geometric shape functions. Then the displacement shape functions in terms of
Cartesian coordinates are derived associated with each displacement node and used further for obtaining
the stiffness matrix and the load vectors. Numerical integration is performed in Cartesian system using a
large number of Gauss points and corresponding weights. To accommodate the opening in the plate, the
negative stiffness and loads over the area of the opening are superposed to the full plate equations.
Numerical results from the present method are compared with the exact (Timoshenko and Woinowsky-
Krieger, 1959) and finite element (I-DEAS) solutions. Additionally, clamped and simply supported skew
plates are investigated and results are compared with those published by Morley (1963). The method is
simple, efficient and capable of yielding very accurate results for both displacement and stress.
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2. Elastic plate equations

The equations in this section are based on the Reissner—-Mindlin theory of plates that is also known as
the first order shear deformation theory. The displacement components along the Cartesian axes at an
arbitrary point in the plate are denoted by «/, v/, and w' respectively and are expressed as:

W=u+zf, V=v+z8, w=w (1)

In the above equations, symbols u, v, and w denote the displacement components at the middle plane of the
plate in x, y, and z directions respectively; 5, and f3, are the components of rotation of the normal to the
middle plane that is also referred to as the reference plane; and z is the distance measured from the reference
plane in the direction perpendicular to the plate. For the plate bending problems, the in-plane displacement
components u and v are assumed to be zero i.e. no stretching of the middle plane. After dropping » and v
from Eq. (1), it can be expressed in the matrix form as

{«'} = [z){4}, )

where

Wy ={uw o v} {4 ={w B B}

and
0 z O
[Zl] =10 0 z
1 00
The strain—displacement relationship is derived as:
{e'} = [Zi{x}, 3)
where

NT / / / v /
{‘C} :{Sx Sy ny )))a yzx}?

{X }T - { yyz yzx Ky Ky K«W }7

_aw _aw (4)
’y}z_a—"_ﬂb yzx_a—i—ﬁh
0B, 0B, 0B, | 0B,
kx:_7 k’:_a kx':_ ~_
“ Ox a5 Jy o 6y+©x
0
00 z 00 3 o 0 0 0
000 z 0 Y 5 5
[Z]:000027[d]T:016—06—
1 0000 * 5 ay
01 000 1 0 0 — —
dy Ox

In the above equation, displacement (w) and coordinates (x,y) are normalized with respect to one of the
plate’s principal dimensions, e.g. the length (@) of a rectangular plate or the major axis (a) of an elliptic
plate. This provides non-dimensional form to the above equations.

The strain—curvature vector, {X} is further expressed as

{X} = ldl{4}. ()
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Strain energy under a given state of stress (or strain) for an infinitesimal volume dxdydz is given by
1 1
dUu = i{s/}T[E]{s’}dxdydz or dU = 5{X}T[Z}T[E} [Z]{X}dxdydz. (6)

In the above, matrix [E] is the fifth order and composed of the elastic modulus (£) and the Poisson’s ratio
(v). Its non-zero terms are as follows.
E

Ey=Ex =12

En=Ey =vEy, En= and Ey = Ess = kE3;. (7)

E
2(1+v)’
The shear correction factor (k = 5/6) is used in the matrix to compensate for the parabolic distribution of

the transverse shear stress along the thickness of the plate. Integration of Eq. (6) over the thickness of the
plate, gives

v=; | _xyoixyaa. (8)

where [D]g, ¢ is composed of the thickness and elastic properties of the plate.

D] = / 2" E)Z) d=. 9)

h
2
The non-zero terms in [D],, s are given below.

Dyy = Dy = (1/2)(1 — v)kKy, D3 = Dss = Dy,

1—v
D3y = Dz =vDy, Dss = ( )Dm

2 (10)

Eh Eh?

Ko=-—, Dy=-— .
T TP T 12— )

A numerical solution procedure is developed in this investigation for the analysis of plate bending prob-
lems. The method is described below in various steps.

Displacement fields. A quadrilateral region with four curved edges defines the geometry of the plate in
x—y plane as shown in Fig. 1. The region represents the middle surface of the plate with the thickness (%)
which is assumed to be uniform and small in comparison with the other dimensions along x and y axes.

Fig. 1 shows 9 points which represent the geometric nodes at the middle plane and their coordinates
(x;, 1) with i = 1,2,3,...,9 are prescribed. The shape functions N;(&,n) with i = 1,2,3,...,9 are used for
the interpolation of coordinates (x,y) of an arbitrary point inside the quadrilateral region, (Weaver and
Johnston, 1984). The dimensionless coordinates ¢ and 5 that are also known as natural coordinates are

bounded by —1 < (&,7) < + 1. The coordinates (x, y) can be interpolated by the following equations.
9
x(éa ’7) = ZM(&? n)xia
i=1
9 (11)
(& mn) =) N(&my.

i=1

The above interpolating scheme will be used in setting up the displacement fields in the following manner.

The displacement field is defined by high order polynomials in comparison with the ones used for the
geometric interpolation. Only one displacement field defines the displacement components (w, 8, ,) in
whole region of the plate. In other words the high order polynomials represent the displacement field of the
whole plate as one element. A different set of nodes is introduced and each node has three degrees of
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Fig. 1. A quadrilateral boundary represented by nine points.

freedom corresponding to w, f§;, and f3,. The x and y coordinates of the displacement nodes are obtained
using the geometric interpolation equation (11). The values of these three components are interpolated by
the following equations.

w=>_fix,»)W,
i=1

B =" filx,»)0; (12)
i=1

B = fitx. )¢
i=1

In the above equations, f;(x,y) is the displacement shape function and the indices W, 6;, and ¢, represent w,
f, and f3, respectively at the ith displacement node. The displacement nodes are introduced in the whole
plate region using Eq. (11) which involves polynomials in each & and 5. If p and ¢ denote the orders of the
polynomials in x and y, the number of displacement nodes required is: n = (p + 1)(¢ + 1). Eq. (12) can be
expressed in matrix form as

{4 =[] [AE] [HE] - )] AT} (13)
where {A}T ={w B B},
(N'={m 6 ¢ W 0, ¢ - W 0, ¢}

Matrix [f;(x, )5, is given below.
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filx,y) 0 0
fie,n)l=1 0  filx,y) 0 . (14)
0 0 filx,y)
Substituting Eq. (14) into Eq. (5), we can write
{x} = [d]lfitx,»){I'} = [B{T}, (15)

where [B],,, = [d][fi(x,)] and is not presented in its detailed form because of large size.
Using Eq. (15), the strain energy expression can be written as

U =3I} KT} (16)
In the above equation, matrix [K] represents the stiffness matrix of the whole plate and can be expressed as
X2
/ B dydx, (17)
X1 )’]

Integration of the above expression for the stiffness matrix covering the entire domain of the plate will be
carried out numerically using the Gauss-method. In this integration method the number of integration
points and corresponding weights depends on the order of polynomial used to define the displacement field.
The plate subjected to distributed loads will be solved with the help of load vectors that can be derived in
the following manner.

Consistent load vector. Consider the plate subjected to a uniformly distributed transverse load of
intensity pp on the plate as shown in Fig. 1. The work-done by this load against the plate under the assumed
displacement field can be expressed as

X2 pya(x)

W= // powdxdy = poZW filx,y)dydx. (18)
Area x4 1 (x)

Functions y; (x) and y,(x) represent the lower and upper boundaries respectively of the plate. In the above

expression, the load vector {p} that is composed of the load components associated with each W, can be

expressed as

{r} = po/7 f,xy dydx. (19)

10

Integration will be done using the same Gaussian quadrature method. Eq. (18) can be written in the vector
form as

w = {1} {p} (20)
The variation of the above is given below.
sw = {6} {p}. (21)

The above equation will be used in the equilibrium equation.

Equilibrium condition. The work-energy principle is used to derive the equilibrium equation. If potential
energy of the plate is denoted by II, then we can write IT = U — W. Where, U and W respectively are the
strain energy of the plate and the work-done on the plate under the assumed displacement field. For the
stable equilibrium of the plate the potential energy must be at a minimum. That means dI7 = 0, which is
expressed below.

{81} (KT} — {p}) = 0. (22)
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The solution of the above equation gives the displacement components of the plate at each displacement
node.

Analysis of the plate with an opening. Here, like the above case of plates (i.e. without hole), the whole
plate region is considered as one element. First the plate is considered to be without hole and the stiffness
matrix of the whole region of the plate is calculated by using Eq. (17). The stiffness matrix of the plate
without hole is expressed as

K] = / /} B]dxdy. (23)

The geometry in Fig. 2 is the same as of Fig. 1 except it has an opening with an arbitrary shape. All the
equations derived in the above section of the paper will be used for the analysis of the plate with holes. The
stiffness matrix of the opening is found by using Eq. (17), but with different integration limits. As shown in
Fig. 2, the integration limit in the x direction is from x; to x4, while the integration limit in the y direction is
defined by the equation of the curve that defines the shape of the opening. So the stiffness matrix of the
opening can be expressed by the following equation.

x4 pga(x
K, = / / B]dydx. (24)
x3 J g1 (x

It should be noted that integration in Eq. (24) is carried over the area of the patch or the hole. Matrices [K]]
and [K,] are of the same order, as the same functions are used in both cases.

Now a new stiffness matrix is introduced that is equivalent to the stiffness matrix of the plate with hole.
This matrix is nothing, but the difference of matrices [K;] and [K;]. In this paper it is referred to as the
“equivalent stiffness matrix”.

[Ke] = [Ki] — [K3). (25)

Fig. 2. Patch (or hole) shown in a quadratic domain.
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Uniformly distributed load acting in the transverse direction of the plate can be expressed as

{p} = po/z f x,y)dydx, (26)
{m} = po/4 : fxy)dydx (27)

In the above expressions, vectors {p;} and {p,} correspond to the load acting on the whole plate without
opening and only on the region of the hole, respectively. Now a new load vector is introduced, which acts
on the plate with opening. This vector is, in fact, the difference of vectors {p; } and {p,}. Again, it is called as
the “equivalent load vector” and expressed as follows.

[pe] = [p1] = [pa]- (28)
For the equilibrium condition, Eq. (22) is used with new stiffness and load vectors. That can be written as
{8y (KT} = {p}) = 0. (29)

The solution of the above equation gives the displacement components over the whole plate region,
including the hollow part of the plate. The displacement components within the opening region are ficti-
tious. The displacement and stress components are obtained by using interpolation functions.

3. Numerical results

The method presented in this paper is applied to the linear static analysis of rectangular, circular,
elliptical and skew plates subjected to the uniformly distributed load over the entire plate or over a patch of
the plate geometry. In case of the plate with an opening, the plate is assumed to be loaded uniformly over its
surface area and the hole is incorporated in the analysis through negative stiffness and load parameters, as
discussed earlier in this paper. A computer program has been developed in object oriented C++ computing
environment with double precision. Shown in Figs. 3 and 4 are rectangular and elliptical plates respectively
with circular and rectangular patches (or holes). A typical patch (or hole) is defined by its geometric center
located at(xo,)y) as shown. The circular patch/hole is further defined by its radius R. Similarly, the rect-
angular patch/hole is defined by its sides ¢ and d. The geometry of the rectangular and skew plates is defined
using 9 points and the same number of shape functions, Eq. (11). Similarly, the geometries of circular and
elliptical plates are defined by 9, 16 and 25 points for which quadratic, cubic and fourth order polynomials
respectively in each of ¢ and # directions are used. Eq. (11) is then used to find the Cartesian coordinates of
the displacement grid points, which are further used in Eq. (12) for the displacement shape functions. For
generating the shape functions given in Eq. (12) equal values for both p and ¢ are used in the following
calculations. It is found that the use of the fourth order polynomials yields very accurate representation of
the circular region which is represented by 25 geometric nodes as shown in Fig. 5. Numerical results ob-
tained from the present method are compared with the exact results (Timoshenko and Woinowsky-Krieger,
1959). Results for the cases with patch loadings and holes are obtained by the present method and then
compared with those obtained by a commercial computer code [-DEAS. The value of the Poisson’s ratio
v = 0.3 is used in the following calculations.

Rectangular plate. The method is evaluated on uniformly loaded rectangular plates of length a and width
b with clamped and simply-supported edges for which the numerical results are available in the monograph
of Timoshenko and Woinowsky-Krieger (1959). Values of the geometric and material’s parameters used in
the calculation are: @ = 1.0 (m), £ = 1.0 (MPa), 2 = 0.01 (m) and ¢ = 1.0 (Pa). Tenth order polynomial in
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Fig. 3. Rectangular plate showing circular and rectangular patches (or holes).

each of x and y is used in defining the displacement fields corresponding to (w, f8;, ,). This order of
polynomials requires 121 displacement nodes and 363th order matrix to obtain displacement. Displacement
restraints are applied to the nodes that lie on the boundary. Table 1 contains results pertaining to the
transverse deflection at the center of the plate and bending moments at the center as well as the middle
points A and B as shown in Fig. 3, of the edges for the uniformly loaded rectangular plates with built in
edges from the two sources mentioned above. The aspect ratio (b/a) in this table varies from 1.0 to 2.0. A
similar set of results is presented in Table 2 for the simply-supported case with aspect ration (b/a) varying
from 1.0 to oo. It is seen that the present method yields results, which are in excellent agreement with the
exact results (Timoshenko and Woinowsky-Krieger, 1959).

Square plate with square or circular opening. For this case, the length of the plate a = 1 (m), thickness
h=0.01 (m), E=1 (MPa), v = 0.3, the load magnitude of ¢ = 1.0 (Pa), radius » = 0.075 (m) for the cir-
cular opening and center at (0.25 m, 0.25 m) are chosen for the calculation. It is expected that a doubly
connected plate of this type will require very high order polynomials for the displacement fields to obtain
accurate results. Also, for this type of plate numerical results are not readily available in the open literature.
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Fig. 4. Elliptic plate, with major and minor axes being 2a and 2b respectively, showing circular and rectangular patches (or holes).
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Fig. 5. Geometric grid for the circular region represented by a fourth order interpolating polynomials.
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Table 1

Deflections (m) and bending moments (N m/m) in a uniformly loaded rectangular plate with built in edges
b/a Displacement wy (M) (M,)g

Present Exact Present Exact Present Exact
1.0 0.0138 0.0138 -0.0514 -0.0513 —-0.0514 —-0.0513
1.1 0.0165 0.0164 —-0.0582 —-0.0581 —-0.0539 —-0.0538
1.2 0.0189 0.0188 —-0.0640 —-0.0639 —-0.0554 —-0.0554
1.3 0.0209 0.0209 —0.0688 —-0.0687 —-0.0563 —-0.0563
1.4 0.0226 0.0226 -0.0727 -0.0726 —-0.0568 —-0.0568
1.5 0.0240 0.0240 —-0.0758 -0.0757 —-0.0570 -0.0571
1.6 0.0252 0.0251 —-0.0782 —-0.0780 —-0.0571 —-0.0571
1.7 0.0252 0.0260 —0.0800 —-0.0799 —-0.0571 —-0.0571
1.8 0.0268 0.0267 —-0.0813 —-0.0812 —-0.0571 —-0.0571
1.9 0.0273 0.0272 -0.0823 —-0.0822 —-0.0570 —-0.0571
2.0 0.0277 0.0277 —-0.0830 —-0.0829 -0.0570 —-0.0571
(M), (M),
Present Exact Present Exact

1.0 0.0229 0.0231 0.0229 0.0231
1.1 0.0267 0.0264 0.0232 0.0231
1.2 0.0300 0.0299 0.0228 0.0228
1.3 0.0327 0.0327 0.0222 0.0222
1.4 0.0350 0.0349 0.0213 0.0212
1.5 0.0368 0.0368 0.0203 0.0203
1.6 0.0382 0.0381 0.0193 0.0193
1.7 0.0393 0.0392 0.0183 0.0182
1.8 0.0401 0.0401 0.0174 0.0174
1.9 0.0407 0.0407 0.0165 0.0165
2.0 0.0412 0.0412 0.0158 0.0158

Table 2

Deflections (m) and bending moments (N m/m) in a uniformly loaded rectangular plate with simply supported edges
b/a Present (w), Exact (w), Present (M, ), Exact (M,), Present (M, ), Exact (M,),
1.0 0.0444 0.0443 0.0479 0.0479 0.0479 0.0479
1.1 0.0532 0.0530 0.0555 0.0553 0.0493 0.0494
1.2 0.0617 0.0616 0.0627 0.0626 0.0501 0.0501
1.3 0.0698 0.0697 0.0694 0.0693 0.0503 0.0504
1.4 0.0774 0.0770 0.0755 0.0753 0.0502 0.0506
1.5 0.0844 0.0843 0.0812 0.0812 0.0498 0.0499
1.6 0.0908 0.0906 0.0862 0.0862 0.0493 0.0493
1.7 0.0965 0.0964 0.0908 0.0908 0.0486 0.0486
1.8 0.1018 0.1017 0.0948 0.0948 0.0479 0.0479
1.9 0.1065 0.1064 0.0985 0.0985 0.0471 0.0471
2.0 0.1106 0.1106 0.1017 0.1017 0.0464 0.0464
3.0 0.1336 0.1336 0.1189 0.1189 0.0406 0.0404
4.0 0.1400 0.1400 0.1235 0.1235 0.0384 0.0384
5.0 0.1416 0.1416 0.1245 0.1246 0.0375 0.0375
[ 0.1481 0.1422 0.1301 0.1250 0.0390 0.0375

Therefore, the present formulation is evaluated against the typical finite element analysis (FEA) using
eight-node mapped element from I-DEAS. Before proceeding with further cases, a convergence study is
carried out for a clamped uniformly loaded plate with a circular opening in its first quadrant. Table 3
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Table 3

Convergence study for a uniformly loaded square plate with built in edges and a circular opening at (xo, ) = (0.25,0.25)
Present method I-DEAS
n(p) wo (m) () (Pa) n (NEL) wo (m) (o), (Pa)
25(4) —-0.0144 —-1643.07 453(112) —-0.01379 —-1413.0
36(5) —-0.0144 —-1639.31 670(175) —-0.01379 —-1396.0
49(6) -0.0137 —-1373.64 929 (252) —-0.01379 —-1387.0
64(7) —-0.0137 —1374.38 1230(343) —-0.01379 —1387.0
81(8) -0.0137 —-1376.94
100(9) —-0.0137 -1376.99
121(10) —-0.0137 —-1376.87
144(11) —-0.0137 -1376.97
169(12) -0.0137 -1372.52
196(13) —-0.0137 -1372.74
225(14) —-0.0138 -1369.52
256(15) -0.0137 -1362.52

contains values of the deflection and bending stresses at the center of the plate against the number of the
displacement nodes (n), with the order of the polynomial (p or ¢) in the parenthesis. The results are con-
verging for the deflection w, as well as the stress (g,,),. Stress (g,,), is found equal to (a,,), in the calcu-
lation and hence not presented here. Similar convergence study is shown for the case of the FEA in this
table. The indicator used for the convergence is again the number of nodal points (r) used in the FE model
and the number of elements (NEL) is given in the parenthesis.

Values of the stresses obtained from the present method and the FEA at various locations, i.e. the middle
points A-D of the edges and the center O as shown in Fig. 3, are presented in Table 4 for the case of fully
clamped square plate subjected to uniformly distributed load and having circular and square openings. It is
seen that the normal stresses o,, and g,, are in excellent agreement. The shear stresses are found to be
negligibly small compared to the normal stresses and hence are not included in the table. Fourteenth order
polynomial in each of x and y is used in generating the displacement fields using 225 displacement nodes.
Number of nodes used in the I-DEAS model is 2111. The deflection w, at the center of the fully clamped
plate from the present study and the I-DEAS are —13.72x107% (m) and —13.83x 10~ (m) respectively for

Table 4

A uniformly loaded square plate with built in edges and a circular/square opening at (xo,)p) = (0.25 m,0.25 m)
Location (x,y) I-DEAS o,, Present o, I-DEAS ¢,, Present o,,
Square hole
0.50,0.0 2987.00 2981.24 900.80 894.37
-0.50,0.0 3056.00 3064.35 922.20 919.30
0.0,0.50 900.80 894.46 2987.00 2981.55
0.0,—0.50 922.20 919.26 3056.00 3064.18
0.0,0.0 —1383.00 —-1368.53 —-1383.00 —-1368.49
Circular hole
0.50,0.0 3000.00 2999.74 904.80 899.92
-0.50,0.0 3054.00 3067.20 921.80 920.16
0.0,0.50 904.80 900.03 3000.00 3000.10
0.0,—0.50 921.80 920.11 3054.00 3067.03
0.0,0.0 —-1374.00 —-1369.52 1374.00 —-1369.52

a=b=10m), c=d=0.15(m), E=1.0 (MPa), g =1.0 (Pa), v=10.3 and 4 = 0.01 (m).
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the square hole. Similarly, the results from the two sources for the circular hole are —13.76x 103 (m) and
—13.75x 1073 (m) respectively.

For the all sides simply supported case, the values of wy, (0.), and (a,,), are calculated at the center
(0.0,0.0) and given in the following.

Square hole :  wy = —44.70 x 107° (m), (04), = (0,,), = —2862.74 (Pa) (present),
wo = —44.93 x 107 (m), (o), = (0,,), = —2868.00 (Pa) (I-DEAS),

Circular hole :  wy = —44.59 x 107 (m), (0y), = (0,y), = —2863.11 (Pa) (present),
wo = —44.93 x 107 (m), (0x), = (0,), = —2866.00 (Pa) (I-DEAS).

Stresses at the mid-edge points are found to be too small for this case to be presented.

Square plate with a square or circular patch loading. For this a square plate with uniform load p on a
small square with ¢ = d = 0.25 (m) and center located at (0.25 m, 0.25 m) is analyzed. Similarly, a square
plate with uniform load p on a small circular area of radius » = 0.125 (m) and center at (0.25 m, 0.25 m) has
been analyzed by both methods. Values of the stresses at middle points A—D of the edges of the plate as well
as at the center O (Fig. 3) are presented in Table 5 for the fully clamped case. It is seen that the normal
stresses oy, and o,, are in excellent agreement. Twelfth order polynomial in each of x and y is used in
generating the displacement fields of 169 displacement nodes. Number of nodes used in the -DEAS model
is 1559. The deflection (wy) at the center of the fully clamped plate from the present study and the I-DEAS
are —0.8442x 1073 (m) and —0.8443x 1073 (m) respectively for the square patch load. For the all sides
simply supported case, the values of wy, (0., and (o,,), are calculated at the center (0.0,0.0) and are given
as:

wo = —3.132x 107 (m), (0n), = (0,), = —171.5 (Pa) (present),
wo = —3.132x 107 (m), (0u), = (6,), = —171.3 (Pa) (I-DEAS).
The deflection w, from the two sources for the circular patch load are —0.6615x10~° (m) and

—0.6613x 10~* (m) respectively. For the all sides simply supported case, the values of wy, (d..), and (0,,),
are calculated at the center (0.0,0.0) and are given as:

wo = —2.483 x 107 (m), (0n), = (0,), = —134.0 (Pa) (present),
wo = —2.483 x 107 (m), (au)y = (o), = —134.2 (Pa) (I-DEAS).

Table 5

Stresses (Pa) in a partially loaded (square/circular patch (xo,)0) = (0.25 m,0.25 m) square plate with built in edges
Location (x,y) I-DEAS o, Present o, I-DEAS o,, Present o,
Square patch
0.50,0.0 313.00 312.63 93.50 93.79
-0.50,0.0 72.87 72.35 22.18 21.71
0.0,0.50 93.50 93.79 313.00 312.63
0.0,-0.50 22.18 21.71 72.87 72.35
0.0,0.0 —-59.50 -59.64 —-59.50 -59.64
Circular patch
0.50,0.0 246.50 24591 73.63 73.77
—-0.50,0.0 56.45 55.48 17.18 16.64
0.0,0.50 73.63 73.78 246.50 245.92
0.0,-0.50 17.18 16.64 56.45 55.48
0.0,0.0 —45.20 —44.98 —45.20 —44.98

a=b=10(m),c=d=025(m), E=1.0 (MPa), g = 1.0 (Pa), v = 0.3 and % = 0.01 (m).
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The agreement between the results from the present method and those from I-DEAS is very good for the
above cases with patch loadings on the square plate and with opening in the square plate.

Circular and elliptic plates. In this section, a modeling procedure for the analysis of elliptic plates with the
same load types and openings as the square plates is presented. The circular plate is a special case of the
elliptic one. Fig. 4 shows appropriate geometric parameters for the plate as well as the circular and square
patches which can be treated either as the loading areas or the openings. An elliptic plate is first mapped
into a circle of radius unity using the transformation x = acos 6 and y = bsin 6. Here, a = the major axis,
b =the minor axis and 0 = the angle from the positive x-axis. On and inside this circle, the geometric nodes,
the number of which depends on the order of polynomials in ¢ and #, are prescribed first to find the shape
functions given in Eq. (11), which is then used to define displacement nodes. Using the displacement nodes,
the shape functions in x and y as given in Eq. (12) are generated and used in the numerical calculations.

To understand the effects of the number of geometric nodes on the accuracy of the results, clamped and
simply supported elliptic plates subjected to uniformly distributed loads are analyzed using 9, 16 and 25
geometric nodes. Numerical values of deflection and bending stresses (for the circular plate)/bending
moments (for the elliptic plate) at points O, A and B as shown in Fig. 4 are presented in Tables 6 and 7

Table 6

Deflection (m) and Stresses (Pa) in a circular plate subjected to UDL on the lower face of plate
Parameter Present method—geometric points Exact solution

9 16 25

Clamped boundary conditions (8th order polynomial)
wo —-0.010228 —-0.0107308 —0.0106855 —0.0106641
(0 —-1659.51 —-1875.58 —1874.00 —-1875.00
(0y)a -507.99 —-555.80 —-561.52 —-562.50
(0u)p —-508.08 —555.90 -561.61 -562.50
(61)p —-1659.78 -1875.91 —1874.32 —-1875.00
(1) 1198.03 1211.21 1218.66 1218.75
(ay)o 1198.03 1211.21 1218.66 1218.75
Simply supported boundary conditions (10th order polynomial)
Wwo —0.041996 —0.0435972 —-0.0435013 —0.0434766
(1) 3025.93 3097.72 3093.99 3093.75
(a)o 3025.93 3097.72 3093.99 3093.75

Table 7

Bending moments in an elliptical plate with built in edges subjected to UDL
Parameter Present method number of geometric nodes Exact solution

9 16 25

Clamped boundary conditions
Wo —0.0036489 —0.0037899 —0.0037759 —0.0037592
(M), —-0.0091525 —0.0091256 —0.0092380 —0.0092266
(M), —-0.0137715 —-0.0140048 —0.0140638 —0.0140477
(M), 0.0091648 0.0105601 0.0110124 0.0110159
(M), 0.0236693 0.0228876 0.0250052 0.0247907
Simply supported boundary conditions
Wo —0.0150390 —0.0155819 —0.0155463 —0.0155493
(M), —-0.0237780 —-0.0240762 —0.0241004 —0.0246617
(M), —0.0342234 —-0.0351622 —0.0350654 —0.0356595

a=0.50 m, b = 0.33333 m (12th order polynomial).
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respectively for the uniformly loaded circular and elliptic plates for which exact results are available in the
monograph of Timoshenko and Woinowsky-Krieger (1959). An excellent agreement between the results
from the two different sources is found for both clamped and simply supported conditions. The case with 25
geometric nodes yields better results and hence this is used in the following calculations.

Clamped circular and elliptic plates subjected to patch loadings are analyzed by the present method
using 14th order polynomial in each of x and y for the displacement fields. This requires 225 displacement
nodes each having three degrees of freedom and the order of the resulting stiffness matrix is 675. The
coordinates (xo,)p) of the centroids of the patch are: (0.1768 m, 0.1768 m) for the circular plate and
(b/2,b/2) for the elliptic plate. Circular and elliptic plates are also analyzed by I-DEAS using 1585 and
1934 nodes in the models respectively and the results are presented in Tables 8 and 9. The displacement w
at (0.0,0.0) are as follows.

Circular plate:

Square patch load : wy = —1.311 x 107* (m) (present) and wy= —1.319 x 10~* (m) (I-DEAS),
Circular patch load : wy = —1.037 x 10~ (m) (present) and wy = —1.045x 107* (m) (I-DEAS).

Table 8
Circular plate with built in edges subjected to uniformly distributed load on a patch with: ¢ = d = 0.25 (m), for the square patch and
R =0.125 (m) for the circular patch (xo =y = 0.1768 m)

Location (x,y) I-DEAS 0., Present o, I-DEAS o,, Present o,
Square patch
0.50,0.0 301.00 298.51 89.65 89.64
—-0.50,0.0 87.42 86.27 26.09 25.92
0.0,0.50 89.65 89.60 301.00 298.36
0.0,-0.50 26.09 26.08 87.42 86.82
0.0,0.0 -132.10 —-132.80 —-132.10 132.90
Circular patch
0.50,0.0 237.10 232.35 70.66 69.77
-0.50,0.0 68.39 69.63 20.42 20.92
0.0,0.50 70.65 69.38 237.10 231.05
0.0,-0.50 20.42 21.48 68.39 71.51
0.0,0.0 —-100.80 -99.33 —-100.80 -99.36
Table 9
Stresses in an elliptical plate with built in edges subjected to UDL on the patch ((xo, ) = (/2,5/2)), c =d = 0.150 m, R = 0.075 m,
a/b=15
Location (x,y) I-DEAS oa,, Present o, I-DEAS g,, Present o,
Square patch
0.50,0.0 33.56 32.50 10.04 9.78
-0.50,0.0 3.62 5.24 1.13 1.58
0.0,0.50 32.57 33.12 110.10 110.36
0.0,-0.50 10.63 10.87 35.52 36.21
0.0,0.0 -17.25 —18.22 -31.55 -32.11
Circular patch
0.50,0.0 26.09 25.27 7.82 7.60
-0.50,0.0 2.79 4.17 0.87 1.26
0.0,0.50 25.54 25.90 86.42 86.30
0.0,—0.50 8.29 8.38 27.68 27.92
0.0,0.0 -13.10 —-13.67 —24.36 —24.88
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Elliptic plate:
Square patch load : wy = —1.819 x 10™* (m) (present) and wy = —1.815x 10~ (m) (I-DEAS),
Circular patch load : (wy = —1.424 x 10™* (m) (present) and wy = —1.422 x 10~* (m) (I-DEAS).

Tables 10 and 11 present the values of stresses in the same manner as in Tables 8 and 9 respectively for
the uniformly loaded circular and elliptic plates clamped at the boundary with square and circular open-
ings. The values of displacement wy at (0.0,0.0) are:

Circular plate case:

Square hole : wy = —10.47 x 10 (m) (present) and wy = —10.61 x 10~ (m) (I-DEAS),

Circular hole : wy = —10.51 x 10 (m) (present) and wy = —10.59 x 10~* (m) (I-DEAS).
Elliptic plate case:

Square hole : wy = —10.4722 x 10~ (m) (present) and w, = —10.61 x 10~* (m) (I-DEAS),

Circular hole : wy = —10.5128 x 10~ (m) (present) and wy = —10.59 x 107* (m) (I-DEAS).

Table 10

Circular plate with built in edges subjected to UDL
Location (x,y) I-DEAS o, Present o, I-DEAS o,, Present o),
Square hole
0.50,0.0 1821.00 1785.48 541.50 535.10
-0.50,0.0 1858.00 1879.99 549.20 563.45
0.0,0.50 541.60 535.73 1821.00 1787.58
0.0,-0.50 549.20 564.18 1858.00 1882.42
0.0,0.0 -1192.00 -1201.72 -1192.00 -1201.72
Circular hole
0.50,0.0 1830.00 1802.91 542.90 540.33
-0.50,0.0 1861.00 1882.80 550.00 564.29
0.0,0.50 542.90 540.85 1830.00 1804.65
0.0,-0.50 550.00 564.79 1861.00 1884.46
0.0,0.0 —1196.00 -1206.83 1196.00 -1206.81

c=d=0.125m, R =0.0625 m (xo = yy = 0.1768 m).

Table 11
Stresses in an elliptical plate with a hole ((xo,)0) = (/2,5/2)), ¢ =d = 0.10 m, R = 0.05 m, with built in edges subjected to UDL,
a/b=1.5

Location (x,y) I-DEAS o, Present o, I-DEAS g, Present o,,
Square hole

0.50,0.0 647.40 637.23 188.50 191.56
-0.50,0.0 659.30 649.53 190.40 195.25
0.0,0.50 434.90 446.24 1453.00 1486.98
0.0,-0.50 441.20 451.10 1477.00 1503.20
0.0,0.0 —553.30 —-553.70 —843.60 -836.41
Circular hole

0.50,0.0 645.60 640.74 186.30 192.61
-0.50,0.0 657.00 652.03 188.40 196.00
0.0,0.50 434.80 447.72 1455.00 1491.90
0.0,-0.50 439.20 451.88 1472.00 1505.77

0.0,0.0 —-556.80 —-553.67 —848.20 —-837.60
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Table 12
Stresses at the geometric center of a circular plate with a hole or patch (xo = y, = 0.1768 m) with simply supported edges subjected to
UDL
Parameter Present Present I-DEAS
Square patch Circular patch
Wo —-5.021e-03 —3.994¢-3 —3.993¢-03
(0ur)o —346.80 -269.91 —-268.90
(a)o —-346.76 -269.92 —-268.90
Square hole Circular hole
Wwo —0.04393 —0.04375 —0.04484
(0ur)o -3102.51 -3103.53 -3076.00
(7)o -3102.51 -3103.53 -3076.00

¢=d=0.125m and R = 0.0625 m for the hole. c =d = 0.25 m and R = 0.125 m for the patch loading.

Table 13

Stresses at (0.0,0.0) in an elliptical plate with a hole ((xo, ) = (b/2,5/2)) with simply supported edges subjected to UDL, a/b = 1.5.

¢=d=0.10m and R = 0.05 m for the hole

Parameter Present

Present I-DEAS

Square patch

Circular patch

W —8.074e—04
(0)o -67.80
(@0)o ~100.33

Square hole

—6.414e-04 —6.415¢-04
-52.96 —52.62
-78.57 -78.67

Circular hole

Wo ~0.0157732
(0o ~1459.88
(G40 -2127.93

¢=d=0.15m and R = 0.075 m for the patch loading.

—-0.0157210 -0.0101574
—1459.44 —1451.00
—-1459.44 —-1451.00

b

b

Fig. 6. Geometry of the skew plate.

Simply supported boundary condition with patch loadings and also other cases with square and circular
openings are analyzed and results presented in Tables 12 and 13 respectively for the circular and elliptic
plates. Results at the geometric center O are reported only, as the values of the stresses and displacement at

points A through D are found to be negligibly small.

The values of the normal stresses .. and o), at points A-D and geometric center O of the plate as shown
in Fig. 4 from the present method and also from I-DEAS are in very good agreement. In the case of the
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Table 14
Simply supported rhombic plate subjected to uniform transverse load
Morley (finite difference method) Present
o ni wWo Minax Miin p(”i) Wo Minax Min
Simply supported case
90 49 0.0443 0.0473 0.0473 94 0.0448 0.0500 0.0500
81 0.0443 0.0475 0.0475 (16)5 0.0448 0.0500 0.0500
121 0.0443 0.0476 0.0476 (25)6 0.0444 0.0479 0.0479
169 0.0443 0.0477 0.0477 36)7 0.0444 0.0479 0.0479
(49)8 0.0444 0.0479 0.0479
(64)9 0.0444 0.0479 0.0479
80 121 0.0422 0.0485 0.0444 9)4 0.0424 0.0495 0.0475
(16)5 0.0426 0.0506 0.0464
(25)6 0.0423 0.0483 0.0446
36)7 0.0423 0.0485 0.0446
(49)8 0.0423 0.0486 0.0447
(64)9 0.0423 0.0485 0.0448
60 121 0.0276 0.0427 0.0323 9)4 0.0261 0.0400 0.0285
169 0.0277 0.0427 0.0325 (16)5 0.0273 0.0416 0.0303
(25)6 0.0277 0.0431 0.0324
36)7 0.0279 0.0426 0.0342
(49)8 0.0280 0.0430 0.0346
(64)9 0.0280 0.0431 0.0343
50 121 0.0182 0.0364 0.0245 9)4 0.0161 0.0321 0.0186
(16)5 0.0177 0.0336 0.0216
(25)6 0.0183 0.0367 0.0256
36)7 0.0185 0.0371 0.0273
(49)8 0.0186 0.0361 0.0266
(64)9 0.0185 0.0359 0.0257
40 121 0.0100 0.0283 0.0165 9)4 0.0081 0.0231 0.0110
169 0.0101 0.0283 0.0168 (16)5 0.0094 0.0250 0.0139
(25)6 0.0099 0.0282 0.0177
36)7 0.0100 0.0288 0.0185
(49)8 0.0101 0.0279 0.0177
(64)9 0.0105 0.0288 0.0177
30 49 0.0038 0.0189 0.0086 9)4 0.0030 0.0141 0.0056
81 0.0039 0.0191 0.0091 (16)5 0.0037 0.0161 0.0074
121 0.0041 0.0192 0.0094 (25)6 0.0039 0.0183 0.0096
169 0.0041 0.0192 0.0096 36)7 0.0040 0.0185 0.0098
225 0.0042 0.0192 0.0098 (49)8 0.0041 0.0186 0.0097
(64)9 0.0039 0.0170 0.0085

n; = number of internal nodes, p = the order of the polynomial.

elliptic plate with patch loadings, the magnitudes of the stresses are considerably small at point C (-0.50,
0.0 in Table 9) and the difference in the results from the two methods is seen in the range of 30-50%. The
displacement wy is generally in excellent agreement for all of the above cases.

Skew plates. The present method is also evaluated against the results published by Morley (1963), who
published a short monograph providing the theory of elastic structure that is needed to solve skew plate
problems. The author provided analytical and finite difference solutions using polar and oblique coordinate
systems respectively for the uniformly loaded skew plates as shown in Fig. 6. Both the simply supported and
clamped boundary conditions were considered. Table 14 contains deflection wy in (m) and principal



T. Muhammad, A.V. Singh | International Journal of Solids and Structures 41 (2004) 3977-3997 3995
Table 15
Simply supported rhombic plate subjected to uniform transverse load
Morley (simple series solution) Present
o N Wo Mnax Mmin P Wo Mmax Mmin
Simply supported case
85 3 0.0438 0.0484 0.0464 4 0.0442 0.0501 0.0491
6 0.0438 0.0486 0.0466 5 0.0443 0.0507 0.0488
6 0.0439 0.0484 0.0467
7 0.0439 0.0486 0.0466
8 0.0439 0.0485 0.0466
9 0.0439 0.0486 0.0466
80 3 0.0423 0.0484 0.0448 4 0.0424 0.0495 0.0475
6 0.0423 0.0486 0.0448 5 0.0426 0.0506 0.0464
6 0.0423 0.0483 0.0446
7 0.0423 0.0485 0.0446
8 0.0423 0.0486 0.0447
9 0.0423 0.0485 0.0448
60 3 0.0280 0.0427 0.0330 4 0.0261 0.0400 0.0285
6 0.0280 0.0425 0.0333 5 0.0273 0.0416 0.0303
6 0.0277 0.0431 0.0324
7 0.0279 0.0426 0.0342
8 0.0280 0.0430 0.0346
9 0.0280 0.0431 0.0343
50 3 0.0186 0.0365 0.0251 4 0.0161 0.0321 0.0186
6 0.0188 0.0362 0.0258 5 0.0177 0.0336 0.0216
6 0.0183 0.0367 0.0256
7 0.0185 0.0371 0.0273
8 0.0186 0.0361 0.0266
9 0.0185 0.0359 0.0257
40 3 0.0103 0.0284 0.0172 4 0.0081 0.0231 0.0110
6 0.0105 0.0281 0.0180 5 0.0094 0.0250 0.0139
6 0.0099 0.0282 0.0177
7 0.0100 0.0288 0.0185
8 0.0101 0.0279 0.0177
9 0.0105 0.0288 0.0177
30 3 0.0043 0.0191 0.0101 4 0.0030 0.0141 0.0056
4 0.0044 0.0192 0.0105 5 0.0037 0.0161 0.0074
5 0.0044 0.0192 0.0107 6 0.0039 0.0183 0.0096
6 0.0044 0.0191 0.0108 7 0.0040 0.0185 0.0098
7 0.0045 0.0191 0.0108 8 0.0041 0.0186 0.0097
8 0.0045 0.0191 0.0108 9 0.0039 0.0170 0.0085

N = number of terms in the series, p = the order of the polynomial.

bending moments M,,,, and M;,, both in (N m/m), at the center O of the plate obtained by the finite
difference method in oblique coordinate system for skew angles 90-30°. The results are given against the
number of internal grid points considered in the finite difference solution. The results from the present
method are also presented in this table against number of internal displacement nodes. In Table 15, the
results presented by Morley (1963) are obtained analytically using series solution in polar coordinate
system. In general the agreement between the results from the two studies is very good. For small skew
angles, the discrepancy is slightly higher in the neighborhood of 12%. The present method agrees better
with the finite difference method used by Morley than the analytical method for the simply supported case.
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Table 16
Clamped skew plates
Morley Present
o N a/b=10 a/b=125 a/b=15 a/b=20 p a/b=10 a/b=125 a/b=15 a/b=2.0
wWo
75 2 0.0128 0.0178 0.0212 0.023 4 0.0026 0.0048 0.0077 0.0146
4 0.0123 0.0176 0.0211 0.0242 5 0.0107 0.0164 0.0209 0.0262
6 0.0122 0.0176 0.0211 0.0242 6 0.0120 0.0173 0.0209 0.0240
8 0.0122 7 0.0122 0.0176 0.0211 0.0240
8 0.0123 0.0176 0.0212 0.0242
9 0.0123 0.0176 0.0212 0.0242
60 4 0.0122 0.0142 0.0158 4 0.0012 0.0018 0.0039
5 0.0083 0.0107 0.0147
6 0.0114 0.0137 0.0158
7 0.0119 0.0141 0.0158
8 0.0120 0.0142 0.0158
9 0.0120 0.0142 0.0158
45 4 0.0068 0.0071 4 0.0006 0.0012
5 0.0045 0.0060
6 0.0064 0.0073
7 0.0067 0.0073
8 0.0067 0.0072
9 0.0067 0.0071

N = number of terms in the series, p = the order of the polynomial.

However, the finite difference grid is much finer than the displacement grid used in the present analysis. The
results for the uniformly loaded clamped plate are presented in Table 16 and the agreement is excellent.
Here, Morley used the oblique coordinates in solving this problem.

4. Concluding remarks

A numerical method using the concept of the finite element method has been presented in this paper for the
bending of complicated shaped plates. In this method the plate geometry and the displacements are expressed
in terms of higher order polynomials. The method utilizes two sets of nodal points, the first needed for the
coordinate interpolation and the second for defining the degrees of freedom. The method is truly numerical
where the integration is carried out using as many Gauss points as needed according to the order of the
polynomial used. It is unified in the sense that different complicated shaped plates can be analyzed using the
same algorithm. Numerical examples of rectangular, circular, elliptical and skew plates with clamped and
simply supported boundary conditions and subjected to uniformly distributed loads are considered in this
study. Extremely favorable comparisons of the numerical results are made with the exact solution found in
the monograph of Timoshenko and Woinowsky-Krieger (1959) and finite difference and simple series
solutions presented by Morley (1963). Uniformly loaded square and elliptic plates with offset patch loadings,
or with square and circular openings, are also analyzed and the results are compared with those from the finite
element analysis. Both displacements and stresses are accurately predicted by the present method.
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